Pre-release Movie Ratings Predictor

Austin Min, Rushil Patel, Riley Wong, Krish Ananth
CSCI 183: Data Science

Department of Computer Science, Santa Clara University
Dr. Smita Ghosh
December 9, 2024

Introduction

This project aims to predict rating metrics for movies before they are even
released. By analyzing a large dataset of movies and their most influential features, we
train and test models that will provide the best predictions on the success of a movie
from the standpoint of ratings. The goal is to create a tool that lets fans, movie-makers,
and distributors alike understand what makes a movie successful. Unlike the plethora
of other research that focuses on predicting gross income, we propose that ratings can
serve as a more nuanced and qualitative measure of a movie's success, reflecting
audience perceptions and movie popularity more broadly.

As we continue through the project, we approach aspects of data collection,
evaluation, and preprocessing as well as model training and analysis. We then discuss
the limitations of our models, perform an informal experiment on upcoming movies,

and conclude with future research that could be done to enhance this project.

Data Collection

We originally planned to use IMDb because they provide a non-commercial

dataset on movies here: https://developer.imdb.com/non-commercial-datasets/.

However, the data here is split into relational tables, which takes extra effort to process,
and also lacks some data we particularly want, for example, budget and distributor.
While the data that we see this dataset lacks is available publicly on their website, to
obtain the data files with this additional data we need to coordinate a subscription to
their service.

We shifted our focus to Rotten Tomatoes and found two datasets on Kaggle
relating to such data:

1. https://www.kagale.com/datasets/stefanoleone992/rotten-tomatoes-movies-an

d-critic-reviews-dataset?select=rotten tomatoes movies.csv

2. https://www.kaggle.com/datasets/andrezaza/clapper-massive-rotten-tomatoes-

movies-and-reviews?select=rotten tomatoes movies.csv

https://developer.imdb.com/non-commercial-datasets/
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset?select=rotten_tomatoes_movies.csv
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset?select=rotten_tomatoes_movies.csv
https://www.kaggle.com/datasets/andrezaza/clapper-massive-rotten-tomatoes-movies-and-reviews?select=rotten_tomatoes_movies.csv
https://www.kaggle.com/datasets/andrezaza/clapper-massive-rotten-tomatoes-movies-and-reviews?select=rotten_tomatoes_movies.csv

Of the two, the first dataset looked the most promising because it did not have
many missing values unlike the second. For the rest of this project, we continued with
the first dataset.

There are also public API’s that would let us gather additional data about

movies. One example is the Open Movie Database API, https://www.omdbapi.com/.

However, collecting this data through the API would require a lot of manual effort.
Furthermore, we are limited to 1,000 API calls a day on the free version. For the scope
of this project, we deemed this potential resource unnecessary to pursue. However,
this API would have given us a lot more data on ratings such as from Metacritic, IMDDb,

and Rotten Tomatoes ratings all in one.

Data Evaluation and Preprocessing

1. Feature Selection

To refine the dataset for predicting audience ratings, we began by analyzing
which columns had predictive potential and discarded irrelevant features. For instance,
we determined that summarizing fields like "rotten_tomatoes_link" and "movie_info"
provided no numerical significance that could impact our model in any sort of way, so

they were removed. We focused on maintaining features with intuitive relevance

including "runtime," "content_rating," "genre," "directors," "actors," and
"production_company" which we later evaluated. Meanwhile, we retained
"audience_rating" as the target variable over the “tomatometer_rating” because we
believed the abundance of audience ratings would be more reliable than the ratings of
a few critics per movie. To back this assumption, we see below that audience ratings
generally are more normally distributed than critic ratings, which is likely due to their

large numbers.

https://www.omdbapi.com/

600

BN audience_rating

BN tomatometer_rating

600
500 4

8
5]

Frequency
&
(=]
|
Frequency

200 1
2001

100 4 100

However, the two generally correlate as they increase together as shown in the

plot below:

100 + X

80 4

9

60 -

audience_ratin

204

T
0 20 40 60 80 100
tomatometer_rating

2. Instance Selection

To ensure the dataset is relevant to modern trends, we excluded movies
released before the year 2000, since their audience preferences might differ
significantly from contemporary films. Additionally, movies with fewer than 1,000
audience ratings were removed to improve data reliability since this is generally a very

small audience size for the scale and reach of Rotten Tomatoes. These filters refined

the dataset and focused on recent, widely viewed movies to enhance the accuracy of

audience rating predictions.

3. Feature Evaluation

Content ratings include the ratings “R,” “PG,” “PG-13,” etc. The average
audience rating for each content rating assigned is listed in the table below. We see
that most categories perform generally the same overall, with an average rating
localized around 60.00 with similar deviations. This suggests that content rating

doesn’t influence the performance of movies much.

Content Rating | Average | Std. Dev. | Mean Abs. Dev. | Instances
R 57.19 19.92 16.98 3151
PG-13 59.68 19.01 15.97 1946

NR 66.43 18.17 14.84 1025

PG 63.67 18.67 15.78 763

G 64.89 18.17 15.11 190

NC17 65.92 20.13 17.10 12

There are 21 unique genres in total. The 5 highest average-rated and 5 lowest
average-rated movie genres are listed below. We see a large disparity in average
audience ratings between these genres. This suggests that genre can have a significant

impact on movie ratings.

Genre Average | Std. Dev. | Mean Abs. Dev. | Instances
Documentary 76.39 13.07 9.95 665
Sports & Fitness 75.9 12.57 9.72 73

Special Interest 73.84 14.82 11.44 460
Anime & Manga 72.5 13.59 11.00 6
Faith & Spirituality 71.53 13.83 10.22 30
Comedy 56.73 18.21 15.35 2461
Science Fiction & Fantasy 56.64 20.52 17.22 786
Mystery & Suspense 53.66 19.43 16.45 1478
Cult Movies 52.42 17.01 14.42 12
Horror 45.44 17.92 14.87 767

Production companies include studios and distributors like “Disney,” “Warner
Bros.,” and “Paramount.” Overall, we notice that as production companies increase in
total movies they’ve produced, the average ratings for their movies tend to normalize
around 55-60%. This may be due to the “law of large numbers” since the ratings of
55-60% are the ratings we see most common in the dataset. Meanwhile, production

companies with a generally low number of movies have distributed average ratings.

Movies Produced vs. Average rating (Companies with == 10 movies)

801

Xy .
0] B« .
x & X X x x
X X
i 370
x
[=1]
" x
© x
X X
3 ; x 7 Xy x
o
x
z *x

5]
=]
L
X

X

40

X xx xX x,!xg‘f
X x
x
x

T T T T T T T
0 50 100 150 200 250 300
Movies Produced

Run time appears distributed in a “filled-in” v-shape. In other words, short
movies tend to perform well, average-length movies spread the entire spectrum, and
long movies perform well again. This could be because short and long movies alike are

generally special features and may tend to be more highly celebrated.

100 +

80 4

9

60 4

audience_ratini

40 4

T T T T T
50 100 150 200 250
runtime

4. Feature Encoding

Preprocessing steps were applied to standardize and encode categorical
features. Categorical fields like "genre" and "content_rating" were one-hot encoded to
facilitate their incorporation into machine learning models. This turned our 2 columns
into 27 columns. We did not do the same for “directors,” “actors,” and “production
company” since they had a larger pool of classes which, if one-hot encoded, would
create over 20,000 unique columns. This dimensionality would make our models very
computationally expensive as well as throw off our models due to the inherent
difficulties of handling high-dimensionalities. Therefore, we aimed to try alternative
approaches. Ultimately, we decided on a frequency-based encoding where the most

common actors were given the lowest encodings. Both the “actors” and “directors”

features were integer encoded to integrate this data into our models. We set a 10%
threshold on actors and encoded the discarded actors simply as the largest encoding
plus one. We did the same for directors but, instead, our threshold was that they
needed to have directed at least 2 movies—this alone removed over half of the pool of
directors. This strategy helped remove most of the actors and directors that were lesser
known. We deemed the lesser-known actors as the ones that appear at a lower
frequency throughout the dataset. Setting a 10% threshold allowed the more popular
actors and directors to be featured more prominently within our model.

The concept of our model revolves around the idea that famous actors and
directors tend to produce movies with more box office success. As a result, the lower
integer encoded actors and directors would tend to be more favorable in our model
when it comes to determining box office success for a particular movie. We decided to
keep all production companies for encoding since there were about 1,500 in total
which was manageable. We later tried changing these thresholds and retraining our
models on the altered datasets, but overall we found that these values worked the best
error-wise and computationally.

One additional method we used was to only take the top 3 actors listed per
movie via the lowest encodings, and create distinct columns “actorsi1,” “actors2,” and
“actors3.” We did this while keeping the threshold percentage method, so, if there were
no significant 2nd or 3rd supporting actors, then their encoding would still be the
highest encoding plus one. However, this may not be the most accurate method, as
larger movies would have a bigger cast with much more popular actors than smaller

movies. Nevertheless, it improved the model marginally so it was kept.

5. Normalization
To ensure that the various machine learning algorithms that we implemented are
not greatly influenced by the relative size of the features, we decided to normalize the

data. This was done using Sklearn’s MinMaxScaler which divided the actual value by

the max value of the column it belonged to. The features that we scaled were

“runtime,” “directors,” “actors1,” “actors2,” “actors3,” and “production company.” Since
most of our algorithms were dependent on a distance function, this would improve the
accuracy of our models. Without this scaler, the distance function would amplify the

features with relatively larger values.

Model Training and Analysis

To train our models, we split our data into train and test with 80% going to the
training dataset and 20% going to the testing dataset. To accurately compare our
models against each other, we used mean absolute error. Additionally, we can
intuitively use mean absolute error to evaluate the quality of an individual model without
needing comparisons, as the true values of audience ratings are bounded between 0
and 100. For instance, a model's mean absolute error of 10 indicates that, on average,
the model's predictions deviate by 10 rating points, making it easy to judge whether

the error is acceptable in general.

1. Linear Regression

The first model that we implemented was Linear Regression. Initially, we had a
feeling that this model would not be the best representation as our data could not have
a linear trend. However, when implemented, we got a mean absolute error of 13.00 to
14.00 which depended on the random sampling of the train-test split. Similarly, when
we tested on the same training dataset it got very similar results, validating the lack of

overfitting.

2. Logistic Regression
The second model that we implemented was the Logistic Regression model.
Using mean absolute error as our error function, this model outputted a training error

usually around 14.75 while the test error was usually slightly higher around 15.25.

10

3. Linear SVC

We were curious as to whether using an SVC model would lead to better results
than the regression models, so we decided to test it out on our dataset. The test error
came to about 15.18 on average, while the training error for the model came out to

approximately 15.46, also depending on the sampling of the train-test split.

4. Kernel SVM

We were also curious about the effects of kernelization, and if our models could
be improved upon using Kernel SVM. Our Kernel SVM model performed with a test
error of about 14.70 and the training error came to be approximately 14.54 depending

on the sampling, slightly better than using Linear SVC.

5. Decision Tree Classification

The Decision Tree Classifier can handle non-linear data well while handling both
numerical and categorical data properly. We implemented this model and usually got a
mean absolute error of around 15.00 to 16.00 depending on the train-test sampling. We

noticed that the best depth of the decision tree was usually around 6 to 8.

Decision Tree Performance

18.5 1

18.0 4

17.5 1

17.0 4

16.5 4

Mean Absolute Error

16.0 4

15.5 1

0 5 10 15 20 25
Max depth

11

6. k-Nearest Neighbor

The next approach that was implemented was the k-Nearest Neighbor model. In
our code, we implemented this model by trying all k values in the range 0 to 80. The
best minimum absolute error that we got from all values of kK was approximately 16.00
to 17.00. We generated a graph to see the association between the k values and the
error and saw that the error value increased for values between 1 to 10, meaning it
could be overfitting using those k’s or being subject to outliers. However, the general
trend after k equaled 10 was that the error began to generally decrease with some
minor deviations along the way. Using the elbow method, the ideal value of k would be

around 20 to 30.

KNN Performance

22

21 A

20 A

19 4

Mean Absolute Error

18 4

17 4

T
0 10 20 30 40 50 60 70 80
K Value

7. Distance Weighted k-NN

The implementation of distance-weighted k-NN was quite similar to the regular
k-NN approach defined above. However, the plot of distance-weighted k-NN was
different, especially for small values of k. In regular k-NN we saw the error increase in

the range k equaling 1 to 10. However, for distance-weighted k-NN, the error generally

12

decreased throughout all k values. This showcases that since we are using weights,
this model can handle outliers better while not overfitting the data. Using the elbow
method to determine the ideal value of k would help us determine the value of k to be
approximately 20 to 30 again, just like the previous k-NN model. The best minimum
absolute error was similar to the regular k-NN model, with this model giving a minimum

error of 16.00 to 17.00 as well.

Distance Weighted KNN Performance

17.8 +

17.6 1

17.4 4

17.2 4

Mean Absolute Error

17.0 1

16.8 -

16.6

T
0 10 20 30 40 50 60 70 80
K Value

8. Locally Weighted Linear Regression

So far, Linear Regression seems to be the model that performs the best. Another
modified version of k-NN that we had implemented was Locally Weighted Linear
Regression to try to stick to the success of this model. This model would take the k
nearest neighbors of the new data point and then fit a linear regression line only
through those points. Therefore, this model does not focus on generalization from the
entire data but instead emphasizes making proper predictions based on local data. We
generally saw that a large k value was needed for this model: depending on the
train-test split, the optimal k was usually between 400 to 600. In general, the minimum

absolute error occurred around k as 500 which tended to range from 12.80 to 14.00

13

depending on the sample. This was a generally solid model in comparison to the
previously implemented models. However, this model was very computationally
expensive and took over 10 times longer to run than other models. Furthermore, there
existed no module in our Python libraries that provided this, so we had to implement it

ourselves and it may not be as robust.

Locally Weighted Linear Regression Performance

13.8 A

13.7

13.6

13.5 A

Mean Absolute Error

13.4

13.3 A

13.2 A

2[|}0 4[|)0 660 Bl'.l){] lDI{JO
K Value

9. Conclusions

The best and most reliable model appeared to be linear regression with a mean
absolute error of around 13.00 to 14.00. It is important to contextualize this
performance. Given that the true values of ratings range only from 0 to 100, a mean
absolute error of even 13.00 represents a notable percentage of the total range, which
suggests there is a limit to the model's practical utility. However, considering that most
individual features we evaluated in the dataset originally had mean absolute deviations
ranging from about 9.00 to 17.00 when calculating their respective averages, most of
our models' performances align with the inherent variability in the data. That said, we
had hoped that aggregating the data altogether would help our models identify

stronger patterns and would lead to significantly improved predictive accuracy, but the

14

results suggest that the underlying complexity or noise in the data may still be a limiting

factor.

Applying The Model
For the sake of interest, we wanted to apply our model to upcoming movies to
predict how they will do before their release. We retrained the most promising models
on all the data available (keeping the best k-values we found where necessary) and got

these predictions for these four upcoming movies:

Predicted Audience Rating
Movie Name

Lin. Reg. Decision Tree k-NN
A Minecraft Movie 58.17 49.00 51.00
Mufasa: The Lion King 7817 85.00 72.00
Captain America: Brave New World 51.91 49.00 49.00
Flight Risk 54.70 59.0 38.0

Conclusion

There are many challenges associated with movie predictions. The feature we
wanted the most but could not obtain reasonably was budget. We hypothesize that
budget is a large predictor because it can serve as a metric that correlates to cast
quality, production quality, and marketing quality. However, given the scope of this
project, there was not enough time to acquire this data.

We should also consider the variability of ratings due to factors such as
competitive releases, social media buzz, and revivals through streaming services. With
more time, we would like to add more features to the data set. Along with the

aforementioned features, it would likely prove useful to have data such as if a movie is

15

a sequel, if it is based on an existing franchise (book, game, TV show), or what type of
role significant actors play (protagonist, villain, etc).

Another important consideration is how our preprocessing techniques
themselves influence prediction accuracy. While we aimed to uncover patterns through
feature engineering and data aggregation, our results suggest that the inherent
variability in audience ratings might limit the achievable precision without additional
data. Exploring advanced ways of encoding data and other learning techniques could

potentially capture relationships between features and ratings more effectively.

Additional Information

The data parsing, evaluation, and encoding processes, as well as the model

training and analysis, can be found below:

https://github.com/au-s-ti-n/movie predictor

The relevant directions for installing necessary packages and running the code

repository can be found in the README.md file.

https://github.com/au-s-ti-n/movie_predictor

16

References
Khalid Ibnal Asad, T. Ahmed and M. Saiedur Rahman, "Movie popularity classification
based on inherent movie attributes using C4.5, PART and correlation
coefficient," 2012 International Conference on Informatics, Electronics & Vision
(ICIEV), 2012. https://ieeexplore.ieee.org/document/6317401
Vikranth Udandarao, Pratyush Gupta. “Movie Revenue Prediction Using Machine

Learning Models,” 2024. https://arxiv.org/pdf/2405.11651v1

https://ieeexplore.ieee.org/document/6317401
https://arxiv.org/pdf/2405.11651v1

