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‭Introduction‬

‭This project aims to predict rating metrics for movies before they are even‬

‭released. By analyzing a large dataset of movies and their most influential features, we‬

‭train and test models that will provide the best predictions on the success of a movie‬

‭from the standpoint of ratings. The goal is to create a tool that lets fans, movie-makers,‬

‭and distributors alike understand what makes a movie successful. Unlike the plethora‬

‭of other research that focuses on predicting gross income, we propose that ratings can‬

‭serve as a more nuanced and qualitative measure of a movie's success, reflecting‬

‭audience perceptions and movie popularity more broadly.‬

‭As we continue through the project, we approach aspects of data collection,‬

‭evaluation, and preprocessing as well as model training and analysis. We then discuss‬

‭the limitations of our models, perform an informal experiment on upcoming movies,‬

‭and conclude with future research that could be done to enhance this project.‬

‭Data Collection‬

‭We originally planned to use IMDb because they provide a non-commercial‬

‭dataset on movies here:‬‭https://developer.imdb.com/non-commercial-datasets/‬‭.‬

‭However, the data here is split into relational tables, which takes extra effort to process,‬

‭and also lacks some data we particularly want, for example, budget and distributor.‬

‭While the data that we see this dataset lacks is available publicly on their website, to‬

‭obtain the data files with this additional data we need to coordinate a subscription to‬

‭their service.‬

‭We shifted our focus to Rotten Tomatoes and found two datasets on Kaggle‬

‭relating to such data:‬

‭1.‬ ‭https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-an‬

‭d-critic-reviews-dataset?select=rotten_tomatoes_movies.csv‬

‭2.‬ ‭https://www.kaggle.com/datasets/andrezaza/clapper-massive-rotten-tomatoes-‬

‭movies-and-reviews?select=rotten_tomatoes_movies.csv‬

https://developer.imdb.com/non-commercial-datasets/
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset?select=rotten_tomatoes_movies.csv
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset?select=rotten_tomatoes_movies.csv
https://www.kaggle.com/datasets/andrezaza/clapper-massive-rotten-tomatoes-movies-and-reviews?select=rotten_tomatoes_movies.csv
https://www.kaggle.com/datasets/andrezaza/clapper-massive-rotten-tomatoes-movies-and-reviews?select=rotten_tomatoes_movies.csv


‭3‬

‭Of the two, the first dataset looked the most promising because it did not have‬

‭many missing values unlike the second. For the rest of this project, we continued with‬

‭the first dataset.‬

‭There are also public API’s that would let us gather additional data about‬

‭movies. One example is the Open Movie Database API,‬‭https://www.omdbapi.com/‬‭.‬

‭However, collecting this data through the API would require a lot of manual effort.‬

‭Furthermore, we are limited to 1,000 API calls a day on the free version. For the scope‬

‭of this project, we deemed this potential resource unnecessary to pursue. However,‬

‭this API would have given us a lot more data on ratings such as from Metacritic, IMDb,‬

‭and Rotten Tomatoes ratings all in one.‬

‭Data Evaluation and Preprocessing‬

‭1. Feature Selection‬

‭To refine the dataset for predicting audience ratings, we began by analyzing‬

‭which columns had predictive potential and discarded irrelevant features. For instance,‬

‭we determined that summarizing fields like "rotten_tomatoes_link" and "movie_info"‬

‭provided no numerical significance that could impact our model in any sort of way, so‬

‭they were removed. We focused on maintaining features with intuitive relevance‬

‭including "runtime," "content_rating," "genre," "directors," "actors," and‬

‭"production_company" which we later evaluated. Meanwhile, we retained‬

‭"audience_rating" as the target variable over the “tomatometer_rating” because we‬

‭believed the abundance of audience ratings would be more reliable than the ratings of‬

‭a few critics per movie. To back this assumption, we see below that audience ratings‬

‭generally are more normally distributed than critic ratings, which is likely due to their‬

‭large numbers.‬

https://www.omdbapi.com/
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‭However, the two generally correlate as they increase together as shown in the‬

‭plot below:‬

‭2. Instance Selection‬

‭To ensure the dataset is relevant to modern trends, we excluded movies‬

‭released before the year 2000, since their audience preferences might differ‬

‭significantly from contemporary films. Additionally, movies with fewer than 1,000‬

‭audience ratings were removed to improve data reliability since this is generally a very‬

‭small audience size for the scale and reach of Rotten Tomatoes. These filters refined‬
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‭the dataset and focused on recent, widely viewed movies to enhance the accuracy of‬

‭audience rating predictions.‬

‭3. Feature Evaluation‬

‭Content ratings include the ratings “R,” “PG,” “PG-13,” etc. The average‬

‭audience rating for each content rating assigned is listed in the table below. We see‬

‭that most categories perform generally the same overall, with an average rating‬

‭localized around 60.00 with similar deviations. This suggests that content rating‬

‭doesn’t influence the performance of movies much.‬

‭Content Rating‬ ‭Average‬ ‭Std. Dev.‬ ‭Mean Abs. Dev.‬ ‭Instances‬

‭R‬ ‭57.19‬ ‭19.92‬ ‭16.98‬ ‭3151‬

‭PG-13‬ ‭59.68‬ ‭19.01‬ ‭15.97‬ ‭1946‬

‭NR‬ ‭66.43‬ ‭18.17‬ ‭14.84‬ ‭1025‬

‭PG‬ ‭63.67‬ ‭18.67‬ ‭15.78‬ ‭763‬

‭G‬ ‭64.89‬ ‭18.17‬ ‭15.11‬ ‭190‬

‭NC17‬ ‭65.92‬ ‭20.13‬ ‭17.10‬ ‭12‬

‭There are 21 unique genres in total. The 5 highest average-rated and 5 lowest‬

‭average-rated movie genres are listed below. We see a large disparity in average‬

‭audience ratings between these genres. This suggests that genre can have a significant‬

‭impact on movie ratings.‬

‭Genre‬ ‭Average‬ ‭Std. Dev.‬ ‭Mean Abs. Dev.‬ ‭Instances‬

‭Documentary‬ ‭76.39‬ ‭13.07‬ ‭9.95‬ ‭665‬

‭Sports & Fitness‬ ‭75.9‬ ‭12.57‬ ‭9.72‬ ‭73‬
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‭Special Interest‬ ‭73.84‬ ‭14.82‬ ‭11.44‬ ‭460‬

‭Anime & Manga‬ ‭72.5‬ ‭13.59‬ ‭11.00‬ ‭6‬

‭Faith & Spirituality‬ ‭71.53‬ ‭13.83‬ ‭10.22‬ ‭30‬

‭…‬ ‭…‬ ‭…‬ ‭…‬

‭Comedy‬ ‭56.73‬ ‭18.21‬ ‭15.35‬ ‭2461‬

‭Science Fiction & Fantasy‬ ‭56.64‬ ‭20.52‬ ‭17.22‬ ‭786‬

‭Mystery & Suspense‬ ‭53.66‬ ‭19.43‬ ‭16.45‬ ‭1478‬

‭Cult Movies‬ ‭52.42‬ ‭17.01‬ ‭14.42‬ ‭12‬

‭Horror‬ ‭45.44‬ ‭17.92‬ ‭14.87‬ ‭767‬

‭Production companies include studios and distributors like “Disney,” “Warner‬

‭Bros.,” and “Paramount.” Overall, we notice that as production companies increase in‬

‭total movies they’ve produced, the average ratings for their movies tend to normalize‬

‭around 55-60%. This may be due to the “law of large numbers” since the ratings of‬

‭55-60% are the ratings we see most common in the dataset. Meanwhile, production‬

‭companies with a generally low number of movies have distributed average ratings.‬
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‭Run time appears distributed in a “filled-in” v-shape. In other words, short‬

‭movies tend to perform well, average-length movies spread the entire spectrum, and‬

‭long movies perform well again. This could be because short and long movies alike are‬

‭generally special features and may tend to be more highly celebrated.‬

‭4. Feature Encoding‬

‭Preprocessing steps were applied to standardize and encode categorical‬

‭features. Categorical fields like "genre" and "content_rating" were one-hot encoded to‬

‭facilitate their incorporation into machine learning models. This turned our 2 columns‬

‭into 27 columns. We did not do the same for “directors,” “actors,” and “production‬

‭company” since they had a larger pool of classes which, if one-hot encoded, would‬

‭create over 20,000 unique columns. This dimensionality would make our models very‬

‭computationally expensive as well as throw off our models due to the inherent‬

‭difficulties of handling high-dimensionalities. Therefore, we aimed to try alternative‬

‭approaches. Ultimately, we decided on a frequency-based encoding where the most‬

‭common actors were given the lowest encodings. Both the “actors” and “directors”‬
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‭features were integer encoded to integrate this data into our models. We set a 10%‬

‭threshold on actors and encoded the discarded actors simply as the largest encoding‬

‭plus one. We did the same for directors but, instead, our threshold was that they‬

‭needed to have directed at least 2 movies—this alone removed over half of the pool of‬

‭directors. This strategy helped remove most of the actors and directors that were lesser‬

‭known. We deemed the lesser-known actors as the ones that appear at a lower‬

‭frequency throughout the dataset. Setting a 10% threshold allowed the more popular‬

‭actors and directors to be featured more prominently within our model.‬

‭The concept of our model revolves around the idea that famous actors and‬

‭directors tend to produce movies with more box office success. As a result, the lower‬

‭integer encoded actors and directors would tend to be more favorable in our model‬

‭when it comes to determining box office success for a particular movie. We decided to‬

‭keep all production companies for encoding since there were about 1,500 in total‬

‭which was manageable. We later tried changing these thresholds and retraining our‬

‭models on the altered datasets, but overall we found that these values worked the best‬

‭error-wise and computationally.‬

‭One additional method we used was to only take the top 3 actors listed per‬

‭movie via the lowest encodings, and create distinct columns “actors1,” “actors2,” and‬

‭“actors3.” We did this while keeping the threshold percentage method, so, if there were‬

‭no significant 2nd or 3rd supporting actors, then their encoding would still be the‬

‭highest encoding plus one. However, this may not be the most accurate method, as‬

‭larger movies would have a bigger cast with much more popular actors than smaller‬

‭movies. Nevertheless, it improved the model marginally so it was kept.‬

‭5. Normalization‬

‭To ensure that the various machine learning algorithms that we implemented are‬

‭not greatly influenced by the relative size of the features, we decided to normalize the‬

‭data. This was done using Sklearn’s MinMaxScaler which divided the actual value by‬
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‭the max value of the column it belonged to. The features that we scaled were‬

‭“runtime,” “directors,” “actors1,” “actors2,” “actors3,” and “production company.” Since‬

‭most of our algorithms were dependent on a distance function, this would improve the‬

‭accuracy of our models. Without this scaler, the distance function would amplify the‬

‭features with relatively larger values.‬

‭Model Training and Analysis‬

‭To train our models, we split our data into train and test with 80% going to the‬

‭training dataset and 20% going to the testing dataset. To accurately compare our‬

‭models against each other, we used mean absolute error. Additionally, we can‬

‭intuitively use mean absolute error to evaluate the quality of an individual model without‬

‭needing comparisons, as the true values of audience ratings are bounded between 0‬

‭and 100. For instance, a model's mean absolute error of 10 indicates that, on average,‬

‭the model's predictions deviate by 10 rating points, making it easy to judge whether‬

‭the error is acceptable in general.‬

‭1. Linear Regression‬

‭The first model that we implemented was Linear Regression. Initially, we had a‬

‭feeling that this model would not be the best representation as our data could not have‬

‭a linear trend. However, when implemented, we got a mean absolute error of 13.00 to‬

‭14.00 which depended on the random sampling of the train-test split. Similarly, when‬

‭we tested on the same training dataset it got very similar results, validating the lack of‬

‭overfitting.‬

‭2. Logistic Regression‬

‭The second model that we implemented was the Logistic Regression model.‬

‭Using mean absolute error as our error function, this model outputted a training error‬

‭usually around 14.75 while the test error was usually slightly higher around 15.25.‬
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‭3. Linear SVC‬

‭We were curious as to whether using an SVC model would lead to better results‬

‭than the regression models, so we decided to test it out on our dataset. The test error‬

‭came to about 15.18 on average, while the training error for the model came out to‬

‭approximately 15.46, also depending on the sampling of the train-test split.‬

‭4. Kernel SVM‬

‭We were also curious about the effects of kernelization, and if our models could‬

‭be improved upon using Kernel SVM. Our Kernel SVM model performed with a test‬

‭error of about 14.70 and the training error came to be approximately 14.54 depending‬

‭on the sampling, slightly better than using Linear SVC.‬

‭5. Decision Tree Classification‬

‭The Decision Tree Classifier can handle non-linear data well while handling both‬

‭numerical and categorical data properly. We implemented this model and usually got a‬

‭mean absolute error of around 15.00 to 16.00 depending on the train-test sampling. We‬

‭noticed that the best depth of the decision tree was usually around 6 to 8.‬
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‭6.‬‭k‬‭-Nearest Neighbor‬

‭The next approach that was implemented was the‬‭k‬‭-Nearest‬‭Neighbor model. In‬

‭our code, we implemented this model by trying all‬‭k‬‭values in the range 0 to 80. The‬

‭best minimum absolute error that we got from all values of‬‭k‬‭was approximately 16.00‬

‭to 17.00. We generated a graph to see the association between the‬‭k‬‭values and the‬

‭error and saw that the error value increased for values between 1 to 10, meaning it‬

‭could be overfitting using those‬‭k‬‭’s or being subject‬‭to outliers. However, the general‬

‭trend after‬‭k‬‭equaled 10 was that the error began‬‭to generally decrease with some‬

‭minor deviations along the way. Using the elbow method, the ideal value of‬‭k‬‭would be‬

‭around 20 to 30.‬

‭7. Distance Weighted‬‭k-‬‭NN‬

‭The implementation of distance-weighted‬‭k-‬‭NN was quite‬‭similar to the regular‬

‭k-‬‭NN approach defined above. However, the plot of‬‭distance-weighted‬‭k-‬‭NN was‬

‭different, especially for small values of‬‭k‬‭. In regular‬‭k-‬‭NN we saw the error increase in‬

‭the range‬‭k‬‭equaling 1 to 10. However, for distance-weighted‬‭k-‬‭NN, the error generally‬
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‭decreased throughout all‬‭k‬‭values. This showcases that since we are using weights,‬

‭this model can handle outliers better while not overfitting the data. Using the elbow‬

‭method to determine the ideal value of‬‭k‬‭would help‬‭us determine the value of‬‭k‬‭to be‬

‭approximately 20 to 30 again, just like the previous‬‭k-‬‭NN model. The best minimum‬

‭absolute error was similar to the regular‬‭k-‬‭NN model,‬‭with this model giving a minimum‬

‭error of 16.00 to 17.00 as well.‬

‭8. Locally Weighted Linear Regression‬

‭So far, Linear Regression seems to be the model that performs the best. Another‬

‭modified version of‬‭k-‬‭NN that we had implemented was‬‭Locally Weighted Linear‬

‭Regression to try to stick to the success of this model. This model would take the‬‭k‬

‭nearest neighbors of the new data point and then fit a linear regression line only‬

‭through those points. Therefore, this model does not focus on generalization from the‬

‭entire data but instead emphasizes making proper predictions based on local data. We‬

‭generally saw that a large‬‭k‬‭value was needed for‬‭this model: depending on the‬

‭train-test split, the optimal‬‭k‬‭was usually between‬‭400 to 600. In general, the minimum‬

‭absolute error occurred around‬‭k‬‭as 500 which tended‬‭to range from 12.80 to 14.00‬
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‭depending on the sample. This was a generally solid model in comparison to the‬

‭previously implemented models. However, this model was very computationally‬

‭expensive and took over 10 times longer to run than other models. Furthermore, there‬

‭existed no module in our Python libraries that provided this, so we had to implement it‬

‭ourselves and it may not be as robust.‬

‭9. Conclusions‬

‭The best and most reliable model appeared to be linear regression with a mean‬

‭absolute error of around 13.00 to 14.00. It is important to contextualize this‬

‭performance. Given that the true values of ratings range only from 0 to 100, a mean‬

‭absolute error of even 13.00 represents a notable percentage of the total range, which‬

‭suggests there is a limit to the model's practical utility. However, considering that most‬

‭individual features we evaluated in the dataset originally had mean absolute deviations‬

‭ranging from about 9.00 to 17.00 when calculating their respective averages, most of‬

‭our models' performances align with the inherent variability in the data. That said, we‬

‭had hoped that aggregating the data altogether would help our models identify‬

‭stronger patterns and would lead to significantly improved predictive accuracy, but the‬
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‭results suggest that the underlying complexity or noise in the data may still be a limiting‬

‭factor.‬

‭Applying The Model‬

‭For the sake of interest, we wanted to apply our model to upcoming movies to‬

‭predict how they will do before their release. We retrained the most promising models‬

‭on all the data available (keeping the best‬‭k‬‭-values‬‭we found where necessary) and got‬

‭these predictions for these four upcoming movies:‬

‭Movie Name‬
‭Predicted Audience Rating‬

‭Lin. Reg.‬ ‭Decision Tree‬ ‭k-‬‭NN‬

‭A Minecraft Movie‬ ‭58.17‬ ‭49.00‬ ‭51.00‬

‭Mufasa: The Lion King‬ ‭78.17‬ ‭85.00‬ ‭72.00‬

‭Captain America: Brave New World‬ ‭51.91‬ ‭49.00‬ ‭49.00‬

‭Flight Risk‬ ‭54.70‬ ‭59.0‬ ‭38.0‬

‭Conclusion‬

‭There are many challenges associated with movie predictions. The feature we‬

‭wanted the most but could not obtain reasonably was budget. We hypothesize that‬

‭budget is a large predictor because it can serve as a metric that correlates to cast‬

‭quality, production quality, and marketing quality. However, given the scope of this‬

‭project, there was not enough time to acquire this data.‬

‭We should also consider the variability of ratings due to factors such as‬

‭competitive releases, social media buzz, and revivals through streaming services. With‬

‭more time, we would like to add more features to the data set. Along with the‬

‭aforementioned features, it would likely prove useful to have data such as if a movie is‬
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‭a sequel, if it is based on an existing franchise (book, game, TV show), or what type of‬

‭role significant actors play (protagonist, villain, etc).‬

‭Another important consideration is how our preprocessing techniques‬

‭themselves influence prediction accuracy. While we aimed to uncover patterns through‬

‭feature engineering and data aggregation, our results suggest that the inherent‬

‭variability in audience ratings might limit the achievable precision without additional‬

‭data. Exploring advanced ways of encoding data and other learning techniques could‬

‭potentially capture relationships between features and ratings more effectively.‬

‭Additional Information‬

‭The data parsing, evaluation, and encoding processes, as well as the model‬

‭training and analysis, can be found below:‬

‭https://github.com/au-s-ti-n/movie_predictor‬

‭The relevant directions for installing necessary packages and running the code‬

‭repository can be found in the README.md file.‬

https://github.com/au-s-ti-n/movie_predictor
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